Forecasting with Small Macroeconomic VARs in the Presence of Instabilities
نویسندگان
چکیده
Small–scale VARs are widely used in macroeconomics for forecasting U.S. output, prices, and interest rates. However, recent work suggests these models may exhibit instabilities. As such, a variety of estimation or forecasting methods might be used to improve their forecast accuracy. These include using different observation windows for estimation, intercept correction, time–varying parameters, break dating, Bayesian shrinkage, model averaging, etc. This paper compares the effectiveness of such methods in real time forecasting. We use forecasts from univariate time series models, the Survey of Professional Forecasters and the Federal Reserve Board’s Greenbook as benchmarks. JEL Nos.: C53, E17, E37
منابع مشابه
VARMA versus VAR for Macroeconomic Forecasting
In this paper, we argue that there is no compelling reason for restricting the class of multivariate models considered for macroeconomic forecasting to VARs given the recent advances in VARMA modelling methodology and improvements in computing power. To support this claim, we use real macroeconomic data and show that VARMA models forecast macroeconomic variables more accurately than VAR models.
متن کاملForecasting VARs, Model Selection, and Shrinkage
This paper provides an empirical comparison of various selection and penalized regression approaches for forecasting with vector autoregressive systems. In particular, we investigate the effect of the system size as well as the effect of various prior specification choices on the relative and overall forecasting performance of the methods. The data set is a typical macroeconomic quarterly data ...
متن کاملForecasting with Medium and Large Bayesian VARs
This paper is motivated by the recent interest in the use of Bayesian VARs for forecasting, even in cases where the number of dependent variables is large. In such cases, factor methods have been traditionally used but recent work using a particular prior suggests that Bayesian VAR methods can forecast better. In this paper, we consider a range of alternative priors which have been used with sm...
متن کاملUsing VARs and TVP-VARs with Many Macroeconomic Variables
This paper discusses the challenges faced by the empirical macroeconomist and methods for surmounting them. These challenges arise due to the fact that macroeconometric models potentially include a large number of variables and allow for time variation in parameters. These considerations lead to models which have a large number of parameters to estimate relative to the number of observations. A...
متن کاملBayesian Rank Selection in Multivariate Regression
Estimating the rank of the coefficient matrix is a major challenge in multivariate regression, including vector autoregression (VAR). In this paper, we develop a novel fully Bayesian approach that allows for rank estimation. The key to our approach is reparameterizing the coefficient matrix using its singular value decomposition and conducting Bayesian inference on the decomposed parameters. By...
متن کامل